
An Accelerated Implementation of Portals on the
Cray SeaStar

Ron Brightwell Trammell Hudson Kevin Pedretti Keith D. Underwood
Sandia National Laboratories

P.O. Box 5800, MS-1110
Albuquerque, NM 87185-1110

Abstract— This paper describes an accelerated implementation
of the Portals data movement layer on the Cray SeaStar used
in the XT3 platform. The current supported implementation of
Portals is interrupt-driven and does not take full advantage
of the embedded processor on the SeaStar. The accelerated
implementation offloads a significant portion of the network
protocol stack to the SeaStar, providing significant improvements
in network performance. This paper will describe this new
implementation and show results for several network micro-
benchmarks.

I. INTRODUCTION

The SeaStar high-speed network interface and router in the
Cray XT3 contains an embedded PowerPC processor that can
be used to offload a significant amount of network protocol
processing. However, the current Cray-supported implemen-
tation of Portals [1] for the SeaStar does not fully take
advantage of this capability. The current implementation is
interrupt-driven and requires involvement of the host processor
for every message that is received. Sandia has developed
a new implementation of Portals that uses the processing
capabilities of the SeaStar to its fullest extent, eliminating the
interrupt and freeing up the host processor to deliver more
compute cycles to applications. This paper describes this new
implementation of Portals, referred to by Cray as “accelerated
Portals”, and provides a performance comparison with the
Cray-supported implementation for several micro-benchmarks.
We are currently working with Cray to integrate this new
implementation into Cray’s supported software environment
so that it can be available in a future release of Cray software
for the XT series of machines.

II. SEASTAR HARDWARE

The embedded processor on the SeaStar is a dual-issue
500 MHz PowerPC 440 processor with independent 32 KB
instruction and data caches. The firmware running on the
PowerPC is responsible for programming the DMA engines,
since programming them via the host processor with accesses
over the HyperTransport (HT) is prohibitively slow. On the
receive side, the firmware is also responsible for recognizing
the start of new messages and processing incoming message

Trammell Hudson is under contract to Sandia via OS Research, Inc.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-AC04-94AL85000.

headers. The firmware must also recognize and respond to
DMA completion events.

To hold the firmware, local state, and handle interactions
with the host, the SeaStar has 384 KB of scratch memory.
This memory is protected by ECC complete with scrubbing
to find and correct errors as they occur. In this context, a
certain portion of the network management must be done by
the firmware running on the network interface. However, the
firmware can also be augmented to handle other aspects of
the protocol stack. In this paper, we present firmware imple-
mentation details for both a host-based mode, with minimal
work on the SeaStar, and a NIC-based mode, where most of
the Portals processing is offloaded to the PowerPC.

III. SEASTAR FIRMWARE

The firmware running on the SeaStar’s embedded proces-
sor was developed in collaboration with Cray using the C
programming language and a standard GNU tool chain for
the PowerPC 440. The firmware currently consists of a little
more than six thousand lines of C code and approximately two
hundred lines of assembly code1. When compiled, this results
in a 36 KB binary image.

More detailed descriptions of the development tools used
and the firmware’s internals are given in a previous paper [3].
Here, we provide an overview of the firmware’s architecture
and then focus on describing our recent work aimed at
increasing performance by offloading the network protocol
stack to the SeaStar.

A. General Architecture
At the most basic level, the firmware’s job is to program the

SeaStar’s DMA engines to move messages between host mem-
ory and the network. The firmware must keep track of, and
make progress on, multiple concurrent message transmissions
and receptions, and notify the host when each has completed.

On the host, there are some number of client processes
that require access to the high speed network. This number
varies based on the operating environment. Linux service
nodes will typically have many clients (e.g., 10–100 clients),
while compute nodes, which run the Catamount lightweight
kernel, will have one management client and usually one
application process per host CPU core. To keep maintenance

1According to Wheeler’s SLOCCount tool [2]

2

tasks manageable, we chose to develop a single firmware
image that supports both operating environments.

B. Host-Based Mode
In host-based mode, application-level requests trap into the

kernel, which then forwards requests to a single firmware-level
mailbox. This approach allows a large number of clients to be
supported, since each firmware mailbox and its associated pool
of message tracking structures consume a large portion of the
SeaStar’s 384 KB of memory.

This mode is able to handle transfers that are either phys-
ically contiguous or physically discontiguous. For transfers
that span physically contiguous regions of memory, the kernel
simply passes the starting physical address and length of
the message in a command to the firmware. The firmware’s
messaging machinery then generates the DMA engine com-
mands on-the-fly. In the physically discontiguous case, which
is needed to handle requests from Linux processes, the list of
DMA engine commands is generated by the kernel and passed
to the firmware. When each message transmission or reception
is complete, the firmware posts an event to host memory and
interrupts the host processor. The OS is then responsible for
delivering the event to the appropriate client process.

A more detailed description and performance evaluation of
this mode of operation can be found in a previous paper [4].

C. NIC-Based Mode
The goal of this mode is to avoid interactions with the host

processor and OS as much as possible, similar to what other
high-performance networks have done [5], [6]. The benefits
are reduced latency, increased message throughput (messages
processed per second), and reduced host overhead related to
message processing, making more of the host CPU(s) avail-
able for computation. The trade-offs are that the embedded
processor is much slower than the host CPU(s) and the amount
of SeaStar memory is over two orders of magnitude smaller
than the host memory that could be dedicated to message
passing. NIC-based mode was developed to evaluate whether
these obstacles could be overcome. As with supporting both
Linux and Catamount, we chose to implement support for both
host- and NIC-based modes in the same firmware image.

In order for a process to use the network, it must call
the Portals library initialization routine. Initialization and
shutdown requests are forwarded to the firmware via the
kernel using the kernel’s trusted mailbox. For NIC-based
mode, initialization involves allocating SeaStar memory for
a new untrusted mailbox and related firmware structures,
mapping the mailbox into the process’s virtual address space,
and providing the firmware with a map of the process’s
virtual address space (stack, heap, text, read-only data). Once
initialization has completed successfully, the process can then
initiate further operations by writing directly to its mailbox in
SeaStar memory.

Because this user-level mailbox is untrusted, the firmware
must carefully inspect all commands that are received on this
mailbox. The firmware uses the address map provided by the
kernel to insure that data transfers stay within the bounds of the

process’s address space. This is relatively straightforward for
the processes running under the lightweight kernel, since Cata-
mount provides a physically contiguous address space. How-
ever, since the SeaStar has no hardware support for virtual-to-
physical address mapping, a very limited amount of scratch
memory, and a relatively long access time to host memory,
supporting operating systems that do not insure a physically
contiguous mapping is significantly more complex. Given this
extra complexity and the additional performance costs asso-
ciated with supporting physically discontiguous translations,
NIC-based mode only currently works with Catamount.

In addition to protecting the source and destination of data
transfers, protection is also needed for a trusted portion of
the Portals header that precedes every message. The trusted
portion of the header contains information, such as the source
node id and process id, that a user-level process should not
be able to modify. The steps needed to insure that the trusted
header is not modified are complicated by the fact that the
SeaStar is only able to send messages from host memory. If
this were not the case, the NIC could simply construct the
entire header in SeaStar memory and send the header in a
single DMA command. Unfortunately, this limitation of the
SeaStar means that the trusted portion of the header must be
kept in kernel memory and two DMA commands must be used
to send the different parts of the message header. However, the
added complexity and extra DMA command have been shown
to have no significant performance penalty.

Once the firmware recognizes and validates a command
written into the mailbox, it performs the requested operation.
Some commands, such as memory registration and receive
posting, can be handled immediately and the result posted
back to the process. Other commands, such as put and get
operations, are forwarded to the firmware’s messaging ma-
chinery. Once the data movement specified by these commands
is completed, the firmware generates a completion event and
writes it directly into an event queue in the process’s memory.
The process must eventually poll the event queue to recognize
the event. Unlike the host-based implementation, posting an
event does not involve raising and processing an interrupt on
the host.

The most significant performance benefit of the NIC-based
mode comes from the ability to handle message reception
autonomously without involving the host processor or OS.
For host-based mode, every time a new message arrives, the
firmware must raise an interrupt to ask the OS where to deliver
it. From a latency perspective, this path is extremely expensive,
since the interrupt potentially causes a context switch into the
OS and involves several relatively slow round trip accesses
across the HT bus. In contrast, the NIC-based implementation
has all of the information necessary to determine where in
host memory to put incoming messages, effectively bypassing
or offloading this responsibility from the OS and application.

When a message arrives, the firmware’s messaging machin-
ery passes the header information on to another routine that
parses information in the header to determine exactly where
in host memory the incoming message should be deposited.
Once the ultimate destination of the message is determined, the
messaging machinery is given the destination address in host

3

memory and number of bytes to receive and implicitly given
the number of trailing bytes to discard, if any. Once message
reception is complete, the messaging machinery notifies an-
other routine that is responsible for writing a completion event
directly into the host client’s event queue in host memory.

D. Flow Control Protocol
As mentioned above, a unique feature of the SeaStar is its

hardware support for demultiplexing incoming packets into
their appropriate message stream. However, this hardware is
limited by its ability to handle only 256 simultaneous message
streams from distinct sources. When this capacity is exhausted,
long messages from new sources cannot be processed and
must be discarded until space is available in the hardware
resource. Thus, an end-to-end flow control protocol is needed
to recover from lost messages in rare circumstances where the
hardware resource is not sufficient to handle the number of
concurrent messages being received. We have developed such
a flow control protocol for the accelerated implementation
of Portals. Called the CAM Overflow Remediation Protocol
SystEm (CORPSE), this protocol provides the same reliability
and flow-control guarantees as Cray’s host-based protocol,
called CAM Overflow Protocol (COP).

IV. PORTALS

We have described the Portals implementation for the
SeaStar in a previous paper [7]. In this section, we discuss
optimizations that were motivated by our initial performance
evaluation of the NIC-based mode implementation. We en-
countered two significant opportunities for optimization – one
that involved adding to the Portals specification and one for
the way in which our MPI implementation used Portals.

A. MPI Receive Posting
First, performance analysis showed that posting an MPI

receive was much slower using NIC-based mode compared to
host-based mode. This would often lead to confusing results
for our standard suite of micro-benchmarks. Eventually, this
issue was traced to the fact that many micro-benchmarks
did not insure that MPI receives were pre-posted. NIC-based
mode’s slower receive posting meant that more messages
ended up being unexpected compared to host-based mode,
which resulted in degraded performance.

The underlying cause of NIC-based mode’s poor receive
posting performance was that a round trip to the SeaStar across
the HT link is more than an order of magnitude slower than a
Catamount system call (approximately 1 µs vs. 65 ns). Posting
an MPI receive requires three round trips to the SeaStar. Host-
based mode is able to handle this sequence of three calls in
the operating system, without involving the firmware, so the
overhead of each is roughly equivalent to three system calls.
In order to reduce the number of round trips across the HT
down to one, we combined these three operations into a single
function call, called PtlPost().

When Portals was originally designed, the focus was on
identifying a set of general building blocks that could be easily

combined to implement a variety of upper level protocols. In
this instance, creating a specialized API call that combined
several of the simpler building blocks into one aggregate
operation led to significant performance advantages for a
critical MPI operation. This new call has been added to the
official version of the Portals specification.

B. Pre-registration of Memory
The second significant optimization that we made to better

support NIC-based mode modified the way MPI used Portals
for sending messages. Like the PtlPost() optimization,
this change was aimed at reducing the number of round trips
required to perform a common operation — in this case
sending a message. It was also intended to reduce the number
of Portals resources that MPI used for sending messages so
that more SeaStar memory could be freed up for receiving
messages.

As described in [8], the previous implementation of MPI
used three different protocols for short, medium, and long
messages. In the medium and long message case, MPI would
first create a Portals memory descriptor (MD) describing the
user’s buffer in one operation and then use the new MD
to initiate a subsequent put operation. This would result in
two HT traversals to initiate each send operation and would
also consume an MD for each send, which could potentially
consume significant resources for applications that use MPI
non-blocking sends.

Catamount allows for an optimization to this approach.
Since the regions of a Catamount process are physically
contiguous as well as virtually contiguous, the MPI implemen-
tation can use only a few MDs to cover the entire address space
of a process. During initialization, MPI creates an MD that
spans the data region, an MD that spans the stack region, and
an MD that spans the heap region. This approach eliminates
the need to create an MD for each individual user buffer,
since the user buffer is already covered by one of these region
MDs. This reduces the number of HT crossings to just the one
needed for the put operation.

We expected the impact of this change on the ping-pong
bandwidth performance for medium and long messages to be
minimal, since an HT crossing is not significant relative to
the time needed for the transfer. However, we did expect this
optimization to improve message rate and help free up Portals
resources allocated from SeaStar memory.

V. TEST ENVIRONMENT

A. Platform
The platform used for our experiments is the 10,368-

processor Red Storm machine at Sandia. This machine is a
slightly specialized version of the commercial XT3 product.
It differs from the XT3 in that the network is not a torus in all
three directions. In order to support easily switching portions
of the machine between classified and unclassified use, special
switching cabinets were created for Red Storm. This capability
and the limitation of cable lengths only allow the network to
be torus in the z-direction. Each node in Red Storm has a
2.0 GHz Opteron with at least 2 GB of main memory.

4

B. Benchmarks
We chose several microbenchmarks for our initial evalua-

tion. We began with a simple test of ping-pong latency and
bandwidth. For streaming tests, we used a bandwidth bench-
mark developed by Ohio State University, which posts several
messages (64) at the receiver and then sends a stream of
messages from the sender. To measure collective performance,
we used the Pallas MPI benchmark suite [9] version 2.2.1.
Finally, we used a benchmark developed at Sandia to measure
the impacts of MPI queue depths on network performance[10].

VI. RESULTS

The results are grouped into three basic categories: tradi-
tional point-to-point benchmarks, collective benchmarks, and
other data. In each instance, we compare the system with the
Portals processing implemented on the host to the system with
Portals processing implemented on the NIC. In each case, we
also evaluate the impact of adding the CORPSE protocol. For
each graph, the left axis graphs performance (either in time or
bandwidth), and most graphs include the percentage advantage
provided by a NIC-based implementation on the right axis.

A. Basic Point-to-Point Benchmarks
Figure 1 compares the small message latency of the host-

and NIC-based Portals implementations. The difference is
over 1 µs for extremely small messages and nearly 3 µs for
larger messages. This is the advantage of eliminating one
interrupt for small messages and two interrupts for larger
messages (new message start and message completion). The
transition point between 16 bytes and 32 bytes is one of the
limitations of the network. The small packet size forces the
transition from programmed I/O (PIO) mode transfers to DMA
transfers to occur at this point. The addition of the protocol
has measurable, but minimal, impact on ping-pong latency
as much of the protocol processing can be overlapped with
interactions with the host.

The SeaStar has an impressive unidirectional MPI band-
width (Figure 1) that is attributable to the use of the HT inter-
face to the host. Peak bandwidth is currently over 1.1 GB/s. It
is expected that Cray will deliver a second-generation SeaStar
in 2006 that will be able to achieve over 2GB/s. While
the NIC-based implementation offers very little advantage at
extremely large message sizes, at small to moderate message
sizes the significant reduction yields major advantages for the
NIC-based implementation.

The NIC-based implementation also offers dramatic ad-
vantages in streaming bandwidth benchmarks, as shown in
Figure VI-A. In the NIC-based implementation, the work is
better partitioned between the host and NIC processor. This
allows better overall message throughput than the host-based
implementation; however, it also begins to introduce limita-
tions as more work is needed on the NIC. The introduction of
the protocol, for example, reduces the advantage of the NIC-
based implementation because it introduces more work on the
NIC. In the host-based implementation, much of this work is
overlapped with Portals and MPI processing being done on
the host.

Another strong advantage of moving away from bus-based
interfaces to the host and toward bi-directional interfaces like
HT is the ability to sustain full bi-directional bandwidth. Also
shown in Figure VI-A, bi-directional bandwidth on Red Storm
achieves twice the uni-directional bandwidth; however, the
bandwidth curves suffer somewhat with the introduction of
the protocol as there is no longer anywhere to hide the extra
processing overhead.

B. Pallas Collective Benchmarks
The Pallas benchmark suite[9] includes benchmarks for nu-

merous collective operations. Rather than include an excessive
number of graphs, we have selected four collectives that are
relevant to many of the applications at Sandia. The first of
these is MPI Barrier. Barrier is a collective that is virtually
never needed to write a correct MPI program; however, many
application developers find it useful for debugging and timing
and ultimately leave it in production codes. Since the barrier
operation involves a significant number of small messages, it is
one of the few benchmarks where the addition of the protocol
makes a noticeable difference in performance. Overall, the
NIC-based Portals implementation has a significant advantage
over the host-based implementation — particularly at larger
numbers of nodes.
MPI Allreduce and MPI Reduce are also common

operations in many of Sandia’s codes. Unlike the barrier
operation, the reduction operations have data associated with
them and require some computation on the host. The results
presented in Figure 3 uses 16-byte reductions because that is
representative of the data used in Sandia operations (a double-
precision number or a double-precision complex number).
Moving Portals processing to the NIC has a slightly more
significant advantage for MPI Allreduce than for barrier
because the MPI Allreduce has work to do on the host
that can be overlapped with the protocol processing.
MPI Reduce receives an even greater advantage thanks

to its subtle differences from the MPI Allreduce opera-
tion. Where MPI Allreduce must reduce a single number
and distribute it to all participating processors, a node in
MPI Reduce can exit the call as soon as it is done participat-
ing in the communication. This means that communications
from two consecutive reductions can be overlapped, which
leverages the offload provided by the NIC-based implementa-
tion. It also means that there is more opportunity to hide the
protocol processing, and so MPI Reduce does not suffer a
performance penalty from the protocol.

The final collective operation is MPI Allgather.
MPI Allgather is an interesting operation in that the num-
ber of messages sent and the size of the message scale with
the number of nodes. Thus, the time grows quadratically with
the number of nodes and the time for the host- and NIC-based
implementations begin to converge slightly at larger message
numbers.

C. Profiling Results
One of the interesting questions to answer is: where does

the time go? Figure 4 presents a one-way profile of the ping-
pong operations for both the host- and NIC-based Portals

5

 3

 4

 5

 6

 7

 8

 9

 10

 1 4 16 64 256 1024

Ti
m

e
(µ

s)

Message Size (Bytes)

Host Based, No Protocol
Host Based, With Protocol

NIC Based, No Protocol
NIC Based, With Protocol

 0

 200

 400

 600

 800

 1000

 1200

4 16 64 256 1024 4096 16384 65536262144 220 222
 0

 10

 20

 30

 40

 50

 60

Ba
nd

wi
dt

h
(M

illi
on

 B
yt

es
/s

)

%
 Im

pr
ov

em
en

t (
NI

C
Ba

se
d

vs
. H

os
t B

as
ed

)

Message Size (Bytes)

Host Based, No Protocol
Host Based, With Protocol

NIC Based, No Protocol

NIC Based, With Protocol
% Improvement, No Protocol

% Improvement, With Protocol

(a) (b)

Fig. 1. MPI latency (a) and bandwidth (b) performance

 0

 200

 400

 600

 800

 1000

 1200

4 16 64 256 1024 4096 16384 65536262144 220 222

-40

-20

 0

 20

 40

Ba
nd

wi
dt

h
(M

illi
on

 B
yt

es
/s

)

%
 Im

pr
ov

em
en

t (
NI

C
Ba

se
d

vs
. H

os
t B

as
ed

)

Message Size (Bytes)

Host Based, No Protocol
Host Based, With Protocol

NIC Based, No Protocol

NIC Based, With Protocol
% Improvement, No Protocol

% Improvement, With Protocol

 0

 500

 1000

 1500

 2000

 2500

4 16 64 256 1024 4096 16384 65536262144 220 222

-40

-20

 0

 20

 40

Ba
nd

wi
dt

h
(M

illi
on

 B
yt

es
/s

)

%
 Im

pr
ov

em
en

t (
NI

C
Ba

se
d

vs
. H

os
t B

as
ed

)

Message Size (Bytes)

Host Based, No Protocol
Host Based, With Protocol

NIC Based, No Protocol

NIC Based, With Protocol
% Improvement, No Protocol

% Improvement, With Protocol

(a) (b)
Fig. 2. MPi Uni-directional (a) and bi-directional (b) streaming bandwidth performance

implementations. One striking thing to note is that the HT
latency is a major contributor to overall latency. While HT is
generally much lower latency that other bus interfaces, the ar-
chitecture of the SeaStar requires that an embedded processor
communicate with the host processor through a shared RAM
resource. The time for the processors to recognize that a new
item has been written is a dominant factor in the HT latency.

The next significant characteristic to note is that the router
time and the MPI time are both small slivers of the overall
time. The router is highly optimized for HPC (unlike current
InfiniBand [11] routers that are an order of magnitude slower,
for example) and most of the work for MPI, such as context
and tag matching, is included in Portals.

Moving up the bar graphs, the time to notify the host of
an Rx event is comparable for both host- and NIC-based
implementations, as is the time spent in the “polling loop”. The
polling loop is the main loop on the NIC that looks for work to
be done. It is responsible for polling hardware to check for new
events and polling a RAM region used for communicating with
the host. The initial firmware implementation used roughly
500 ns per cycle through this polling loop; we have optimized
this to less than 130 ns through profiling and analysis of the
code paths.

Both transmit and receive operations push more work to
the NIC when the NIC-based implementation is used; thus,

more time is required to setup transmit and receive operations
in the NIC-based implementations. However, the host side
Portals work drops dramatically and the interrupt latencies are
eliminated when most of the Portals work is moved to the
NIC. For the NIC-based implementation, there is still a small
amount of time that is not well characterized. It is believed
that some of this time is related to the timing granularity on
the NIC and some of the overhead added by the protocol.

D. Protocol Overhead

The above performance results illustrate the overhead as-
sociated with the CORPSE protocol for both the NIC-based
and host-based implementations. In order to further charac-
terize the impact of the flow control protocol overhead, we
compare the CORPSE protocol to the COP protocol using
only the host-based implementation. The results in Figure 6
show a comparison between the host-based implementation of
Portals using both CORPSE and COP. There are some minor
differences in the code between these two implementations,
but these results show that CORPSE has a noticable advantage
for small messages for a variety of different communication
patterns.

6

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 4 16 64 256 1024 4096

-40

-20

 0

 20

 40

Ti
m

e
(µ

s)

%
 Im

pr
ov

em
en

t (
NI

C
Ba

se
d

vs
. H

os
t B

as
ed

)

Number of Nodes

Host Based, No Protocol
Host Based, With Protocol

NIC Based, No Protocol

NIC Based, With Protocol
% Improvement, No Protocol

% Improvement, With Protocol

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 1 4 16 64 256 1024 4096

-40

-20

 0

 20

 40

Ti
m

e
(µ

s)

%
 Im

pr
ov

em
en

t (
NI

C
Ba

se
d

vs
. H

os
t B

as
ed

)

Number of Nodes

Host Based, No Protocol
Host Based, With Protocol

NIC Based, No Protocol

NIC Based, With Protocol
% Improvement, No Protocol

% Improvement, With Protocol

(a) (b)

 10

 20

 30

 40

 50

 60

 70

 80

 1 4 16 64 256 1024 4096

-40

-20

 0

 20

 40

Ti
m

e
(µ

s)

%
 Im

pr
ov

em
en

t (
NI

C
Ba

se
d

vs
. H

os
t B

as
ed

)

Number of Nodes

Host Based, No Protocol
Host Based, With Protocol

NIC Based, No Protocol

NIC Based, With Protocol
% Improvement, No Protocol

% Improvement, With Protocol

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 4 16 64 256 1024 4096

-40

-20

 0

 20

 40

Ti
m

e
(µ

s)

%
 Im

pr
ov

em
en

t (
NI

C
Ba

se
d

vs
. H

os
t B

as
ed

)

Number of Nodes

Host Based, No Protocol
Host Based, With Protocol

NIC Based, No Protocol

NIC Based, With Protocol
% Improvement, No Protocol

% Improvement, With Protocol

(c) (d)

Fig. 3. Pallas MPI benchmark performance for Barrier (a), Allreduce (b), Reduce (c), and Allgather (d) (message size = 16 bytes)

0

1

2

3

4

5

Host Based NIC Based

T
im

e
(u

s
)

Uncharacterized

Interrupt Latency

Host-side Portals

FW Setup RX Pong

FW TX Ping

FW Polling Loop Latency

FW Write RX Event To Host

MPI

Router & Wire

HyperTransport

Fig. 4. Profiles of one-way PingPong time

E. Other Issues

Moving processing to the network interface can have signif-
icant ramifications for application processing. One of the par-
ticular limitations of traditional benchmarks is that they do not
consider “real” scenarios. One specific aspect of applications
is that they tend to have more than one posted receive. Posted
receives are typically kept in a linked list that is walked every
time a new message arrives. When that processing is moved
from a fast host processor to a slower NIC processor, a long
posted receive queue can translate into much high effective
network latency. Figure 7 illustrates the difference in latencies
as the length of the posted receive queue is increased. The NIC
pays a penalty of approximately 30 ns for each item traversed

(the fastest NIC in the industry [10]); thus, after traversing a
list of 50 items, the NIC-based approach actually loses to the
host-based approach.

There are two important caveats attached to this result.
Foremost, the nature of the benchmark is inherently more
friendly to the more advanced processor in the host. The two
major issues are that the host processor has a much larger
cache and the host processor has a hardware pre-fetcher that
the NIC processor does not. In a benchmark world where the
list is strictly ordered, the combination of these two means
that host processor is faster than it should be on a per-message
basis by at least a factor of five (the host processor should pay
a cache miss for every list item). The second caveat is that,

7

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

Ti
m

e
(m

icr
os

ec
on

ds
)

Message size (bytes)

cop
corpse

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

M
B/

s

Message size (bytes)

cop
corpse

(a) (b)

Fig. 5. Pallas MPI PingPong latency (a) and bandwidth (b) performance

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

Ti
m

e
(m

icr
os

ec
on

ds
)

Message size (bytes)

cop
corpse

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

Ti
m

e
(m

icr
os

ec
on

ds
)

Message size (bytes)

cop
corpse

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

Ti
m

e
(m

icr
os

ec
on

ds
)

Message size (bytes)

cop
corpse

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

Ti
m

e
(m

icr
os

ec
on

ds
)

Message size (bytes)

cop
corpse

Fig. 6. Pallas MPI benchmark performance for Allgather (a), Allreduce (b), Broadcast (c), and Reduce (d) (message size = 16 bytes)

 1

 10

 100

 1 10 100 1000
-600

-500

-400

-300

-200

-100

 0

 100

Ti
m

e
(µ

s)

%
 Im

pr
ov

em
en

t (
NI

C
Ba

se
d

vs
. H

os
t B

as
ed

)

Number of Leading Non-matched Posted Receives

Host Based NIC Based % Improvement

Fig. 7. Effective MPI network latency for various receive queue traversal depths

8

while some applications use extremely long lists, many have
typical list lengths that are thirty items or fewer[12].

VII. SUMMARY

Compared to the initial host-based implementation, the NIC-
based implementation of Portals is able to achieve significant
performance increases in ping-pong latency and bandwidth as
well as streaming bandwidth performance. The ping-pong la-
tency improvement for the NIC-based approach is 26 percent,
while ping-pong bandwidth improves between ten and twenty
percent for a large range of message sizes. In addition, the
NIC-based flow control that has been developed for Portals
has a distinguishable, but otherwise minimal, impact on per-
formance.

We have also described optimizations to upper-level proto-
cols that were driven by initial performance results from NIC-
based mode. In particular, the relatively slow accesses across
the HT bus to SeaStar memory motivated an additional Portals
API call and a change to the MPI implementation to reduce
the number of HT crossings.

VIII. FUTURE WORK

The Cray XT3 is a system that is continuously improving.
The protocol has opportunities for improvement that we expect
to implement in the near future. For example, a backoff scheme
to better manage a flood of traffic to a single node is currently
being implemented. In addition, performance optimizations
that leverage the 500 MHz embedded PowerPC, such as
offloaded collective operations, are being considered.

We are also considering a rendezvous protocol on the
PowerPC for long messages. The current MPI implementation
uses eager sends for all messages and is occasionally forced
to drop long messages at the receiver if a matching posted
receive is not found. Implementing rendezvous protocol in the
NIC will allow support for true independent progress in MPI
while eliminating the risk of potentially retransmitting large
messages.

We are also planning an in-depth analysis of the impact of
these additions and changes on real applications at scale. Sev-
eral of these enhancements have the potential for significant
increases in application performance and scalability.

And, we are currently working with Cray to integrate this
new implementation of Portals into their code base so that it
may be available in a future release.

IX. ACKNOWLEDGMENTS

The authors gratefully acknowledge the work of the mem-
bers of the Scalable Computing Systems and Scalable Systems
Integration departments at Sandia, especially Jim Laros and
Sue Kelly.

REFERENCES

[1] R. Brightwell, W. Lawry, A. B. Maccabe, and R. Riesen, “Portals
3.0: Protocol building blocks for low overhead communication,” in
Proceedings of the 2002 Workshop on Communication Architecture for
Clusters, April 2002.

[2] SLOCCount, David A. Wheeler, available from
http://www.dwheeler.com/sloccount.

[3] K. T. Pedretti and T. Hudson, “Developing custom firmware for the Red
Storm SeaStar network interface,” in Cray User Group Annual Technical
Conference, May 2005.

[4] R. Brightwell, K. Pedretti, and K. Underwood, “Initial performance
evaluation of the Cray SeaStar interconnect,” in Proceedings of the 13th
IEEE Symposium on High-Performance Interconnects, August 2005.

[5] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Frachtenberg,
“The Quadrics network: High-performance clustering technology,” IEEE
Micro, vol. 22, no. 1, pp. 46–57, January/February 2002.

[6] Myricom, Inc., “Myrinet Express (MX): A high performance, low-level,
message-passing interface for Myrinet,” July 2003. [Online]. Available:
http://www.myri.com/scs/MX/doc/mx.pdf

[7] R. Brightwell, T. Hudson, K. Pedretti, R. Riesen, and K. Underwood,
“Implementation and performance of Portals 3.3 on the Cray XT3,”
in Proceedings of the 2005 IEEE International Conference on Cluster
Computing, September 2005.

[8] R. Brightwell, “A comparison of three MPI implementations for Red
Storm,” in Recent Advances in Parallel Virtual Machine and Message
Passing Interface: 12th European PVM/MPI Users’ Group Meeting,
Sorrento, Italy, September 2005 Proceedings, ser. Lecture Notes in
Computer Science, B. D. Martino, D. Kranzlmuller, and J. Dongarra,
Eds., vol. 3666. Springer-Verlag, 2005, pp. 425–432.

[9] Pallas MPI Benchmarks, http://http://www.pallas.com/e/products/pmb/index.htm.
[10] K. D. Underwood and R. Brightwell, “The impact of MPI queue usage

on message latency,” in Proceedings of the International Conference on
Parallel Processing (ICPP), Montreal, Canada, August 2004.

[11] http://www.infinibandta.org, Infiniband Trade Association, 1999.
[12] R. Brightwell and K. D. Underwood, “An analysis of NIC resource

usage for offloading MPI,” in Proceedings of the 2004 Workshop on
Communication Architecture for Clusters, Santa Fe, NM, April 2004.

